Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2)[S]

نویسندگان

  • Daniël A. Lionarons
  • James L. Boyer
  • Shi-Ying Cai
چکیده

The apical Na(+)-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols and the skate that utilizes structurally different 5β-bile alcohols, and compared substrate specificity with ASBT from humans who utilize modern 5β-bile acids. Everted gut sacs of skate but not the more primitive lamprey transported (3)H-taurocholic acid (TCA), a modern 5β-bile acid. However, molecular cloning identified ASBT orthologs from both species. Cell-based assays using recombinant ASBT/Asbt's indicate that lamprey Asbt has high affinity for 5α-bile alcohols, low affinity for 5β-bile alcohols, and lacks affinity for TCA, whereas skate Asbt showed high affinity for 5α- and 5β-bile alcohols but low affinity for TCA. In contrast, human ASBT demonstrated high affinity for all three bile salt types. These findings suggest that ASBT evolved from the earliest vertebrates by gaining affinity for modern bile salts while retaining affinity for older bile salts. Also, our results indicate that the bile salt enterohepatic circulation is conserved throughout vertebrate evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

They facilitate lipid absorption, inhibit microbe growth in the biliary tract and intestine, and function as signaling molecules that regulate energy expenditure and carbohy-

Journal of Lipid Research Volume 53, 2012 1535 Copyright © 2012 by the American Society for Biochemistry and Molecular Biology, Inc. They facilitate lipid absorption, inhibit microbe growth in the biliary tract and intestine, and function as signaling molecules that regulate energy expenditure and carbohydrate and lipid metabolism ( 2 ). The bile salt pool is maintained in an enterohepatic circ...

متن کامل

Arylsulfonylamino-benzanilides as inhibitors of the apical sodium-dependent bile salt transporter (SLC10A2).

The apical sodium-dependent bile salt transporter (ASBT) plays a pivotal role in maintaining bile acid homeostasis. Inhibition of ASBT would reduce bile acid pool size and lower cholesterol levels. In this report, a series of novel arylsulfonylaminobenzanilides were designed and synthesized as potential inhibitors of ASBT. Most of them demonstrated great potency against ASBT's bile acid transpo...

متن کامل

A novel class of apical sodium--dependent bile salt transporter inhibitors: 1-(2,4-bifluorophenyl)-7-dialkylamino-1,8-naphthyridine-3-carboxamides

The apical sodium--dependent bile acid transporter (ASBT) is the main transporter to promote re-absorption of bile acids from the intestinal tract into the enterohepatic circulation. Inhibition of ASBT could increase the excretion of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. Therefore, ASBT is an attractive target for developing new cholesterol-lo...

متن کامل

Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor.

BACKGROUND Patients with Crohn's disease suffer from intestinal bile acid malabsorption. Intestinal bile acid absorption is mediated by the apical sodium dependent bile acid transporter ASBT/IBAT (SLC10A2). In rats, ASBT is induced by glucocorticoids. AIMS To study whether human ASBT is activated by glucocorticoids and to elucidate the mechanism of regulation. PATIENTS AND METHODS ASBT expr...

متن کامل

Bile-salt hydrophobicity is a key factor regulating rat liver plasma-membrane communication: relation to bilayer structure, fluidity and transporter expression and function.

Bile-salt hydrophobicity regulates biliary phospholipid secretion and subselection. The aim of this study was to determine whether bile salts can influence liver plasma membrane phospholipids and fluidity in relation to the ATP-dependent transporter. Rats were depleted of bile salts by overnight biliary diversion and then sodium taurocholate was infused intravenously at a constant rate (200 nmo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2012